Bitte um Mitwirkung: Umfrage zur strategischen Autonomie der Photonik am Standort Deutschland

In Zusammenarbeit mit dem Marktforschungsunternehmen TEMATYS führt SPECTARIS daher eine Untersuchung zur strategischen, d.h. zur wirtschaftlichen und technologischen Autonomie der Photonik am Standort Deutschland durch. Ein wesentliches Ziel des Projektes ist es, die Bedeutung der Photonik für andere Schlüssel- und Zukunftsindustrien zu unterstreichen, darzustellen, welche Folgen ein Ausbleiben von Produkten der Photonik für diese Anwendungsbereiche haben könnte und daraus Forderungen in Richtung Politik abzuleiten, um insbesondere die wirtschaftliche Autonomie der Photonik zu stärken.
 

Raumsonden-Antenne der ESA bei der PTB vermessen

Auf dem Antennenfreifeld der PTB: Der schwarze Stab ist eine originalgroße Kopie eines der zwei Ausleger der Radarantenne für die Raumsonde JUICE (der weiße Fahnenmast dient lediglich als Support) (Foto: SpaceTech)

Auf dem europaweit einzigartigen PTB-Antennenfreifeld fanden abschließende Untersuchungen der Radar-Antenne für eine Jupiter-Raumsonde statt.

Gibt es Wasser unter dem Eispanzer dreier großer Jupitermonde? War oder wäre sogar Leben möglich? Um solche Fragen zu klären, soll 2023 die ESA-Mission JUICE starten. Unter den zahlreichen Instrumenten der Jupiter-Sonde wird auch ein leistungsfähiges Radar namens RIME sein. Die Radarstrahlen sollen die Eisschichten der Monde bis in eine Tiefe von 9 km durchdringen. Jetzt wurde eine originalgroße Kopie der Antenne bei der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig auf Herz und Nieren getestet. Es waren, nach Simulationsrechnungen und Untersuchungen an einem kleineren Modell, die ersten Tests an einer großen Antenne – und gleichzeitig die abschließenden Tests vor ihrem Einsatz. Für die genauen Messungen der Impedanz, also des inneren Widerstandes der Antenne, nutzte die Firma SpaceTech im Auftrag von Airbus für die ESA das Antennenfreifeld der PTB. Es ist wegen seiner Größe und seiner guten Messbedingungen europaweit einzigartig.

Ein neun Meter hoher schwarzer Stab, befestigt an einem weißen Fahnenmast, ist das Objekt des Interesses. Es ist ein Monopol, und einer von zwei Armen der 16,6 m langen Dipolantenne, die letztlich an der Raumsonde montiert wird. Genau genommen ist es nur eine baugleiche Kopie. Aber seine Abmessungen und Eigenschaften entsprechen genau denjenigen der endgültigen Sende- und Empfangsantenne. Die Vermessung erfolgt mit Messgeräten, die im unterirdischen Messbunker neben der Freifläche verborgen sind. Das Radarsystem mit dem klangvollen Namen RIME (Radar for Icy Moons Exploration) arbeitet mit Radiowellen einer Frequenz zwischen 7,5 MHz und 10,5 MHz. Das entspricht Wellenlängen um die 30 Meter, also mit Kurzwelle – eher untypisch für Radar, das sonst eher mit Wellenlängen von einigen Zentimetern arbeitet. In dem unterirdischen Messplatz haben die Mitarbeiter der von der ESA beauftragten Firma SpaceTech GmbH auch die Messdaten erfasst. Der wichtigste Wert war dabei die Eingangsimpedanz, also der Fußpunktwiderstand der Antenne, gemessen in Ohm.

„Unser Antennenfreifeld ist das größte in Europa“, erklärt Thomas Kleine-Ostmann, Fachbereichsleiter bei der PTB. „Noch wichtiger: Es hat eine besonders ebene Oberfläche. Und es ist besonders frei gelegen; erst in mehr als 150 m Entfernung steht der Zaun zum angrenzenden Wohngebiet.“ Die Radarstrahlen werden also nur vom Boden, der mit einem Zinkbelag gut reflektierend gestaltet ist, zurückgeworfen, nicht aber von Gebäuden – die es ja schließlich im Weltraum auch nicht gibt. Wegen dieser guten Messbedingungen sind die SpaceTech-Mitarbeiter aus Immenstaad am Bodensee angereist; die PTB hat die Fläche für vier Tage an die Firma vermietet.

Vieles hängt daran, ob die Antenne die Erwartungen erfüllt. Daher laufen die Untersuchungen schon Jahre vor der eigentlichen Mission ab. Erst hat die ESA Simulations- und Modellrechnungen durchgeführt, dann in ihrem Testzentrum in den Niederlanden ein kleines Modell der Antenne getestet – und jetzt ist quasi das Original dran. Auch diese Messungen verliefen erfolgreich, sodass das Riesenprojekt weiter geplant werden kann.

JUICE (Jupiter ICy moons Explorer) wird die erste Raumsonde sein, die in die Umlaufbahn eines Mondes eines Planeten am äußeren Rand unseres Sonnensystems einschwenkt und ihn aus nächster Nähe analysieren wird. Dazu werden elf wissenschaftliche Hightech-Instrumente an Bord sein. Die Sonde soll 2023 starten, wird sieben Jahre und ein paar Monate für die Reise zu Jupiter brauchen und dann für 3,5 Jahre den Gasplaneten Jupiter und drei seiner insgesamt mehr als 60 Monde untersuchen. Sein Hauptziel ist der Jupitermond Ganymed, der zweitgrößte Jupitermond und zudem der größte Mond des Sonnensystems; er ist planetenähnlich und ein potenzieller Lebensraum. Mithilfe von JUICE will die ESA seine Oberfläche kartieren und bis tief in den Kern hinein untersuchen, woraus er besteht, ob sich seine Zusammensetzung im Laufe der Zeit verändert hat und ob es Hinweise auf Wasser gibt.

Aber auch die beiden anderen großen, eisbedeckten Jupitermonde Kallisto und Europa will die ESA mithilfe des RIME-Radarsystems unter die Lupe nehmen. Außerdem sollen die Atmosphäre, die Magnetosphäre, die Satelliten und die Ringe von Jupiter selbst untersucht werden. Davon erhofft man sich Erkenntnisse darüber, wie die Bedingungen für die Entstehung von Planeten und von Leben sind und wie unser Sonnensystem funktioniert.
es/ptb

Ansprechpartner
Dr. Thomas Kleine-Ostmann, Leiter des Fachbereichs 2.2 Hochfrequenz und Felder, Telefon: (0531) 592-2200, thomas.kleine-ostmann(at)ptb.de

Autor: Erika Schow

Pressekontakt:
Erika Schow
Wissenschaftsredakteurin Presse- und Öffentlichkeitsarbeit
PÖ Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100
38116 Braunschweig
Tel.: (0531) 592-9314

E-Mail: erika.schow(at)ptb.de
Web: www.ptb.de